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Results in trapping reactions for mobile particles and a single trap
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We have exploited a stochastic model for the description of diffusion controlled reactions for trapping
processes with a single trap in a one-dimensional lattice in order to describe in an exact way the particle
distribution as “seen” from the trap, being fixed or mobile, as well as for perfect or imperfect reactions. From
this we have obtained the exact result for the total number of absorbed particles. Moreover, we have a formal
expression for the nearest-neighbor particle distribution that gives the known results in bottifliadsrap
and fixed particlesand also present an approximate expression that works quite well when the particle
diffusivity is greater than the trap diffusivity.
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I. INTRODUCTION One quantitative measure of the tendency of low-
dimensional reacting systems to segregate is the disténce
The dynamics of diffusion controlled reactions has been(in a trapping systerd+ B— B, with severalA and oneB)
extensively studied in recent years due to its relevance in thef the B particle(or trap to the nearest unreactédparticle,
most diverse areas of physics, chemistry, and biology. Thesgat is, the generalization of the Hertz distribut{dd] that is
processes include coalescence and annihilation reactions valid when neither the trap nor the particles are mobile. Sev-
one- and two-species systeffld. One of the objectives of eral authors have studied this problem of a fixed trap by
such studies was to find theoretical models that describe thgnalyzing different models and schemes including perfect
different possible situations correctly. Since the pioneering15 16 and imperfecf17,1§ reactions, the hard-core poten-
contribution of Smoluchowskj2], many different models tjg| [19] and external field§20,21. In these works it was

have been proposg@]. However, most of them do not give egtaplished that the average nearest-neighbor distance grows
correct results because the effects of fluctuations and/or Colsymptotically as(d)~tY4 for perfect and imperfect reac-

relations were not taken into account. A complete descriptioqions, even for the hard-core potential case. Also, the other

of this kind of phenomenon must include the prOb"j}b”'st'climit case, that is, withA particles stationary anB mobile,
character of the reaction process. More recent studies ha s been anal 26i®2] yielding (d)~t¥2 The much more
been reviewed in Ref$4] and[5]. Among other aspects, the y y 9 :

anomalous kinetics associated with the formation of Segregompllcated intermediate situation, with both the particles

gates of particles in low-dimensional systems has attracteand the; trap mqbﬂg, has received Isss attentlop. There are
§|mulat|ons[23] indicating that(d)~t“, where «a is some

considerable attention. There is a remarkable sensitivity ogalue that interpolates between 1/2 and 1/4 and is a function
such segregation phenomena to changes in initial condition . e
greg P 9 f the ratio betweenD, and Dg (the diffusivities of

the presence of sources, disorder, external forces, etc. el d the t tivelyTh ical
large part of the recent literature is devoted to the analysis o € parlicles an € lrap, respectivelylne empirical
lation obtained from the simulations is

these phenomena under the assumption that some kind ) )
rate equations are validt,5]. a= (1/m)tan “y1+2(Dg/Da). . .

With the objective of obtaining a more complete descrip-, " the present work we analyze this problem within the
tion of such kind of phenomena including the probabilistic famework of our model. We will show that it is possible to
character of the reaction process, we have recently introobtain the exact expression 0fz,t), the distribution of par-
duced a model that is the continuous limit of the masteticles in the reference frame of the trap, and from thjgs,
equation usually employed in simulations of these processe#ie total number of absorbed particles. Moreover, we derive
This model has provided a very adequate framework i formal expression for the probability distribution function
which to describe these processes, offering the possibility ofPDF) of d in the general case.
describing not only the asymptotic, but also intermediate- The organization of the paper is as follows. In Sec. Il we
and short-times regime, yielding excellent agreement withobtain the expressions for(z,t) andNgs. In Sec. lll we
simulations both in one- and two-species trappidg+B compute the finite-size effect for both quantities. In Sec. IV
—B andA+B—B, B+ C—C) and annihilation A+B—0)  we derive a formal expression for the nearest-neighbor par-
reactions as well as in several different situatipfis13]. ticle distribution and we extract from it the limiting cases of

a stationary trap and mobile particles and stationary particles
and mobile trap. An approximated explicit form for tdés

*Electronic address: sanchez@cab.cnea.edu.ar PDF is presented in Sec. V. Section VI describes the way we
"Electronic address: rodrigma@besaya.unican.es have performed the simulations and shows the comparison of
*Electronic address: wio@cab.cnea.edu.ar simulations with theoretical results. Section VIl is devoted to
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57 RESULTS IN TRAPPING REACTIONS FOR MOBE . .. 6391
some conclusions. We show in the Appendix an independent (G(e(t)+z,tle(t’ )+ 2", t')=G(zt|z' 1),
derivation of the one-sided nearest-neighbor particle distri- (6)
bution in the fixed particles case, using the renewal theor

P g y (G(e(t)+zt|le(t’)+2',t")G(e(t')+ 2"t |e(t")+2",t")

approach.
=G(z,t|z ,t'){(G(e(t")+2' t'|e(t")+2Z",1")),...
Il. PARTICLE DISTRIBUTION FROM THE TRAP

The model, as was presented in Riff], considers two WhereG(z,t|z',t") is a diffusion propagator with a diffusiv-
species of particles andB, both mobile, independent, and ity that is the sum of both particle and trap diffusivities
having a given reaction probability when they meet. Here we

will study only a one-dimensional trapping reacticsym- 1
bolically written A+B—B) in a system of diffusingA par- G(z,t|Z' t')= ;
ticles and a single trap that also performs a diffusive mo- VAm(Da+Dg)(t—t")
tion. 2
The model equation for the evolution fbi(x,t), the den- xexd — (z=2) R
sity of the diffusingA patrticles, for a given trap realization 4(Dp+Dpg)(t—t")

e(t) is
P 2 Keeping this in mind, we perform the average and £5).
NGO =DA— NG = 70— e N(X,D, (1) finally becomes
X

t +o
wherey is a constant that measures the reaction probability. n(z,t)=ny— 'yf dt’f dz’g(z,t|z’,t’)5(z’)ﬁ(z’,t’),
As was shown in Ref[6], the perfect reaction case corre- 0 -
sponds to takingy— o in the resulting expressions. 8
We start by considering the integral form of H@d)
t o whereﬁ(x,t)_=<N(x,t)>. _ o
N(x,t)=ng— yf dt,f dX' G(x,tx’,t") A comparison of Eq(8) \i\nth Eq. (2) clearly indicates that
0 —o the form of the distributiom(x,t) is analogous to the distri-

X 5(x — e(t"IN(X' 1), @ butionN(x,t) from a fixed trap at the origif6] but replacing

D, by D=D,+Dg, i.e.,
where G(x,t|x’,t") is the propagatofor conditional prob-
ability) of the diffusiveA particles. The first term in Eq2) - ]| yix| A
appears from the propagation of the initial condition, which n(x,t)=ng| erf JaDt +texp gt D
we assume to be uniform and equalng t

Instead of repeating the procedure of Réf.and in order 1| t
to change our reference system from the laboratory to other Xerfc( + y\/—)
one fixed to the trap, we make the change of variable V4Dt 4D

This is an exact result that is valid for all cases. For a perfect
absorption reaction the second term of E9).vanishes.
An interesting aspect could be to quantify the width of

t depletion zone. With this aim, we linearize the densityear
N(Z,t)zno—Vfodt'G(f(t)+Z,t|6(t'),t’)M0,t’), (4)  the origin and look for the valusv where it reaches the
initial densityng. The resulting expression is

. 9

x=e(t)+z. ()

The form of the equation, using the new variable, is

where NM(z,t)=N(e(t) +z,t). Here, and in order to find a

closed equation forV, we have also performed a similar —
change .in the integration vgriamx’ =_e(t’)+z’]. 2D ex 4D
Iterating Eq.(4), we obtain the series w(t)=— \/_ ,
t
t erfc| y—
N(z,t)zno(l—yj dt’G(e(t) +zt|e(t'),t") 74D
0 (10
t tr ~
+y2J dt’f dt"G(e(t) +z,t|e(t'),t") w(t)=7Dt,
0 0
X G(e(t'),t'|e(t”) t")—- ). (5) where the last equation is an approximate expression that is

valid in the long-time limit for imperfect absorption but is
The use of a diffusive form for the trap propagator the exact solution for perfect absorption at all times.
[W(x,t|x",t")] allows us to write averages over realizations We can also calculate the number of absorbed particles
of the process(t) (indicated by angular bracketas Nags, integratingng—n(x,t). The result is
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Dt D 2t t in a finite lattice with periodic boundary conditions. This
— 1 —ex _> erfc( Y\ —|—-—1|, system is similar to a periodic arrangement of traps that all
™oy 4D 4D} vy move rigidly without varying the distances among them. Pro-
(11)  ceeding in a similar way to Sec. Il, the result for the density
as seen from the trap is the same as the density with a fixed
where the last two terms vanish for perfect trapping, renderPeriodic arrange of traps, replacir@, by D=Da+Dsg.
ing the t? dependence in the complete time regime. ThisThis problem has been solved in Ref8] and[11] in the
result agrees with previous simulations of the flux at the trag-aplace domain. Unfortunately, it is not possible to perform
with perfect absorption [23], which is given by the exactinverse transform and we can only obtain the short-

(d/dt) Npge=2ng DIt~ 12 and long-time behaviors. _
A way of obtaining an analytic correction toandNugg
due to finite-size effects is to perform the difference between
lll. FINITE-SIZE EFFECTS the respective quantity in an infinite system and a finite one
In order to obtain the correction corresponding to finite-in the Laplace domain and to look for an approximate result
size effects, we present now an approach similar to the profer short times. We caih(®(x,t) and N(d)s(t) these respec-
lem of obtaining the density profile from the trap frame, buttive differences, which are given by

D
Nagg(t) =4ng

p( Vs
exp ——|X
0 D

+exp( —§(L—|X|)) i exp( —§

|

X
n

n@(x,s)=— , 12
n@(x,s) e p( N p( \/E) N (12

2—|1-exp ——L||+1+exg ——]|L 2——+1

4 D D Y
1 1

N (s)=2 oD (13

32

\JDs

Y

These expressions can be expanded for large valusdrof
powers of the small quantity exp(ys/DL). Closing up the

expansion to first order we obtain

exp< —%E(L—pq))

~ 0
n@(x,s)=—

s JDs
— | +1
Y
Vs
\/D_S ex —E(L+|X|)
2— -1 ,
Y ( Jbs |
2—+1
Y
(14)
p(JE
ex EL
N& =4n,/D: . (15)
ABS_ 0 2
s3/2(2E+1
Y

el i

Finally, the corrections for finite-size effect can be obtained,
resulting in

_ 2
ﬁ(m(x,t)zno{ 2y\/ ﬂ_tDexp( (;;lxl) )

+ erfc|

— x| L+ x|
—erfc

V4Dt V4Dt

2

Y yt

+|11—- B(L+|X|)_ F

2
Y vt
Xex;{ﬁ(L+|x|)+E

L+|x|Jr [t
\4Dt YNap
2

4 yt

—expg = (L—|x])+ —
p(ZD x 4D>
L_|X|+ [t
Jabt 7 V4D

X erfc

X erfc

} , (16)



57 RESULTS IN TRAPPING REACTIONS FOR MOBE . .. 6393

Dt L2 4D where V(x,t) is given by Eq.(4). A similar procedure ren-
NG (t)=4n, 4\/—exp( -— = (—+L ders the one-sided PDF, that is,
m 4Dt Y
d
X erf L +(£—L—'yt) fxl(d,t)=</\/(d,t)exr{—JOJ\/(x,t)dx > (22)
V4Dt Y

L t Equationg21) and(22) are exact in all range of diffusivities,
+y\/ = as well as for perfect and imperfect reactions. However, so
v4Dt 4D far they are only formal results.

(17) We can compute from Eq$21) and(9) the exact result

These expressions simplify considerably for perfect absorp- 2t t
tion, yielding p(0t)=2n(0t)= 2n0exp< E) erfc( Y\ ﬁ) . (23

. L—|x| . L+ (x|
erfc —erfd| ——
V4Dt V4Dt

2

Yy, vt

X s=L+-—
ex;{2DL+ 4D)erfc

N = . . . .
NP (x.H=no . (19 This expression is null for perfect absorption, whereas

the asymptotic behavior for imperfect reactions is

5t 2 L p(0)=4(ny/ ) DI ().
NG (t)=4no| 2/ —exp — — | —Lerfg i One of the limit cases of Eq21) is whenB is a fixed trap
7T 4Dt V4Dt (Dg=0). Since all realizations correspond &ft)=0, we

19 haveM(x,t)=n(x,t)=N(x,t) and

IV. NEAREST-NEIGHBOR DISTRIBUTION

p(d,t)=2N(d,t)ex;{—ZJOdN(x,t)dx . (29

A general expression for the PDF of the nearest-neighbor
particle has not been obtained until now. In fact, only two

limiting cases corresponding to keeping fixed either the traprhe factor 2 appearing in both the prefactor and the exponent
or particles have been analytically treated in the literaturejs gue to considering the smaller of the right and the left
Both approaches, which at least in principle are not conpegrest-particle distances. Consideration of the one-sided
nected, give a different asymptotic behavior. In this sectioryjstribution from Eg. (22) results in the Redner—Ben-
we derive a general expression for this PDF, obtaining thexyraham formuld 16]. Within our model these PDFs can be

known results in the above-mentioned limiting cases. obtained exactly. We give here the value of the integral that
We consider a particular realization of the proce¢t)  appears in the exponent. It is

and an average over the particle random walks. The density,

as viewed from the trap, idV(x,t). Thus, following Ref. )
[16], the probability of not finding any particle in{d,d) is X _ 4Dpt X
. N(z,t)dz=ng ex
given by 0 iy 4D pt
L/2 5
d f ./\/(x,t)dx} 2Dp X 2Dp yt
+| x+——erf +—exp —
jde(X't)dX o Y ) ( \/m Y 4Dp
QUdt)=|1-—pp—— , (20
f N(x,t)dx ;{ ¥X ) X [t
-L/2 X| exp — | erfc| +y\/—
2D VAD pt 4Dy

whereL is the lattice length. Here it is worth remarking that
the essential assumption of statistical independence in the _ ( L)
o X . erfcl y\/
processes of diffusion and survival of each particle holds 4
whenever we consider the same realization. On the contrary,
by considering several realizations«ftt), the independence
assumption would fail, as noted in Rg22]. Then it is clear
that averages ovei(t) must be taken at the end. After taking
L—oo, we have the PDF differentiatinQ(d,t) with respect

Da

] . (25

The asymptotic expression for the PDF is the skewed Gauss-

to d and averaging. The final result is _ d 2\/D_A 1
p(d,t—o0)=2n, +
) d Ba v [Vt
p(d,t):—£<exp{—fd/\/(x,t)dx > d2 4\/D_A 1
. By Vmt
=<[/\/’(d,t)+j\/(—d,t)]exp{—f N(x,t)dx >
~d which allows us to calculate the mean value dfin the

(21 asymptotic time regime
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3 1/4 32 3/4 - d_
(@)= A exp( AN0DR 41 2100 p<d.t>=2n<d,t>ex{—2 [ova{ @
2\ng P2 \mt y(art) M4 °
_ (73D at) M 27) and an explicit expression can be given simcand the in-
- 2\/n_0 ' tegral involved have been exactly calculated previo{Elys.

(9) and(25), substitutingD , by D]. Within this approxima-

Equations(26) and (27) were obtained in Refl17], where tion the absorption of diffusing particles with a coefficient
the partial reflection coefficient is related withy through DA due to a diffusing trap of coefficielidg is equivalent to
k= y/(2D,) [6]. the case of diffusing particles with the coefficidd+Dg

The opposite limit of immobile particles is less trivial but absorbed by a fixed trap and hence E@$) and (27) are
also possible to obtain in the perfect absorption case. Insteathlid (again substitutingD, by D) and then we have
of solving Eq.(4) using thatG(e(t) +z,t|e(t'),t")= 5(e(t) (d)~t¥ in the long-time regime.
+2z—€(t')), we can directly guess the solution as

M2zt =No{1— 0(Z— €min(1))+ 0z~ ema D)}, (28) VI- SIMULATIONS

. o . To test our results we have performed simulations for
€min(t) and emat) being the minimum and maximum val- different values of parameters. The simulations were per-
ues reached by the trap until tintein the trap frame. Al formed on a lattice of. sites with periodic boundary condi-
though we can obtaip(d,t), for simplicity we only present  tions. We have initially distributedN, particles at random
the derivation off, (d.t). Substituting this expression in Eq. over the lattice and allowed them to perform a continuous-
(22), we obtain time random walk(characterized by the jump frequency at
each neighbor sitg). In each site we can have any number
of A particles and when two particleg (@ndB) coincide in
the same site, thA particle disappears with a rape

This algorithm is implemented in the following way. At
whereh(x,t) is the PDF ofep,(t). This convoluted form the start we assign a diffusion time for each particle and a
corresponds to a PDF of a sum of two independents varireaction time for eacl particle in the same site as the trap.
ables:ena(t) and the distance from the maximum excursionThen we perform the event corresponding to the earlier time.
to the nearest particléexponentially distributed This ap-  If it is a reaction process th& particle disappears; if it is a
proach is the one used ii22], where the expression was diffusion process the particle moves to one of the neighbor-
explicitly computed. We do not repeat the calculations hereing sites. Then we generate a new diffusion and eventually
but we note that this result is contained in E44) by taking  new reaction times. The algorithm follows, choosing the
y—0, event corresponding again to the earlier time and repeating

the same steps until the desired final time is reached. Finally,
V. A SIMPLE APPROXIMATION it is not difficult to see that diffusion and reaction times must
be generated by adding to the present time a new time with

As we have seen in the preceding section, the calculatiothe following PDFs:f(t) =2qgexp(—2qt) for diffusion times
of the PDF in a general situation involves the averaging ofandf(t) = pexp(—pt) for reaction times. The connections be-
exq—2f8/\/(x,t)dx], N(x,t) being a functional of the pro- tween simulation parameters and the model ones are given
cesse(t). The explicit form ofAV(x,t) in terms ofe(t) could by D=gAx? andy=pAx, whereAx is the jump length. Al
be obtained solving the integral equatitt). Both calcula- simulations are the result of 10 000 realizations and they
tions, the averaging and the inversion of Ed), would be  were performed in a lattice of 101 sites with an initial density
analytically performed only in very few cases. In general,of particlesng=1.

one should resort to approximations. In this section we show To test the theoretical expression fofx,t) [Eq. (9)] we
a simple approximation leaving more sophisticated methodgave performed simulations for different values®f and

d
fxl(d,t)=n0f h(x,t)e™ M@= Xdx, (29)
0

based on path integrals for a future work. Dg. In Fig. 1 we show those comparisons for different val-
In our approximation we will take the averages of Eq.es ofy. In addition, we also compare with the results of the
(21) using the method of cumulants. Hence we have model considering a finite-size lattice. Curves for different
values ofy are similar, with the notable difference that for

perfect absorption the density at the trap position is null and
reaches a finite value for imperfect absorption, which is
0 larger for smallery. The agreement between the model and
, the simulations is excellent.
fﬁdﬁd(/\/(x,t)/\f(x D) In Fig. 2 we show the comparison between simulations
and our model results fo¥ g for different values ofy. The
. (30) agreement between the mode_l an_d the simulations _is again
excellent up to times where finite-size effects are noticeable.
In the inset we show the lower-order correction to the model
The lower-order approximation consist on closing the expandue to these effects.
sion up to first order. In this case the PDF can be written as Figure 3 shows the comparison of our approximation to

d
In< ex;{ - J,dN(X’t)dX
1

d.
= —Zf n(x,t)dx+ =
0 2

2

d.
Xdx dxX —4 f n(x,t)dx
0
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FIG. 1. Density ofA particles in the reference frame of the trap
for different values ofy: (a) y— = (perfect reactiop (b) y=1, and

(c) ¥=0.1. The solid line corresponds to our model finite-size re-
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0.1

L
1000 10000

FIG. 2. A log-log plot of absorbed particles for different values
of absorption. From top to bottom—o, y=1, andy=0.1. The
points are the result of simulations, while the dashed line corre-
sponds to our model for an infinite lattice. The inset shows the same
curves fory=1 in a linear plot, where the finite-size corrections
(solid line have been added. The diffusivities used are
D,=Dg=0.5.

them reach the same value independerd gf do not agree
with the theoretical one.

VIl. CONCLUSIONS

In conclusion, we have shown that the stochastic model
we have recently introduced for the description of diffusion
limited reactions allows us to calculate the exact expression

of n(z,t), the distribution of particles in the reference frame
of the trap. The resulting density depends only on diffusivi-
ties through the sum of trap and particle ones. Setting
D=Du+Dg, n(z,t) can be obtained changirig, to D in

the densityN(x,t) of the simpler problem of a fixed trap at
the origin and mobile particles. Integrating the density, we
have computed the absorbed particle number given an ana-
lytical expression renderingt¥? dependence, in accord with
previous simulation§23]. Moreover, we have calculated the
finite-size corrections to both quantities, showing excellent
agreement with simulations, and also obtained an estimation
for the depletion width that in the long-time limit goes as
w(t)~wDt.

A general(formal) expression for the PDF of the nearest-
neighbor particle in the general case has been derived. From
this expression we have reobtained the known cases of fixed
trap and fixed particles, which in principle have shown no
connections between them until now. Although the general

Sults, the dashed line to the infinite Iattice, and the pOintS are th@xpressu)n |S a formal one, through a Cumulant expans|on we

results of simulations for differenD, values:D =1 (squares
0.75(circles, 0.5 (up triangle$, 0.25(down triangleg and 0(dia-
monds, in such way thaD=1 in all cases. The different curves
corresponds to time&rom top to bottom t=150, 300, and 600.
The values ofw in ascending order of time af@) 21.7, 30.7, and
43.4;(b) 20, 28.9, and 41.6; an@) 15.6, 22.8, and 33.6.

the PDF[Eq. (31)] with simulations. We note that the men-
tioned expression is exact fabg=0 for the whole time

have obtained a simple approximation that works quite well
for smallDg. This PDF is normalized and yields the exact
value ford=0 given by Eq.(23). This approximation yields,
in the asymptotic limit(d)~t' Instead, in Ref[23], an
exponent depending on the rafig, /Dg has been proposed,
but without a clear argument supporting such a result, which
nevertheless does work well.

The form of Eq.(21), together with the assumption of the
trap’s diffusion motion, preluded a path integral treatment

regime. We can see that the approximation works better fofwhich is yet to be fully exploited in the context of diffusion
smaller values of trap diffusivity and for shorter times. Forlimited reactiong24]), which suggests better approximations

d=0, the theoretical value given by E@1) is the exact one
and coincides with Eq23). However, the values of the PDF
at the origin coming from simulations, even though all of

for the entire regime of values &, andDg. Such an analy-
sis will be the subject of a future work.
We remark here that it is not difficult to obtain the PDF
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T T T APPENDIX: A RENEWAL APPROACH FOR FIXED
0.20 - PARTICLES

We consider here the case when the particles are fixed and
the trap is a mobile one. We c&l] the distance between the
trap and the nearest particbe, the distance between it and
the following particle, etc. Then we consider this situation as
a modified renewal proce§&5|, wherex,, x5, ..., allhave
the same exponential PDF given by

PDF

010 i/

0.05

fx, (%) =1(x)=noexp(—nex), (A1)

with i=2,3, ... .Note that this assumption is exact for per-
fect absorption, but only a good approximation for the case
d of imperfect reactions. Then we can write the relation

0.00

0.12

. ﬁ*uxo=fguxng%[ﬂ<pnh (A2)
where the asterisk to a function indicates the Laplace trans-
form in the spatial variable. From E¢A2) one immediately

obtains the nearest-neighbor particle distribution in the
. Laplace domairfjl(p,t), which results

0.00//

PDF

\4
0.06 |

0.03 8 No

{eDBtpzerfc( VDgtp)+ P

f* (p,t)= _
(P0 p—7/(2Dg)

0o E 0

00000000,
M T
eyzt’(“DB)erfc( y\/ —4;

36 48
B

0.00

X

FIG. 3. PDF for(a) t=250 and(b) t=1000. The solid line
corresponds to our approximation, while points correspond to simu- 5
lations with different values of diffusivities. The parameter values —ePstPerfq \/D_Btp)
and the code for diffusivities used are the same as those in (&g. 1

} . (A3)

for the nearest-neighbor distance for a finite lattice followingThis expression can be inverted to give the one-sided PDF
a procedure similar to that in Sec. 1V, but without taking
L—oo, It renders a formal equation similar to E@1). How- NoYy x4 n2Dat X

: A fy (X,t)= —————e "X VBl erf] —nNgyDgt
ever, such an equation will still have, fa==0, the same 2n,Dg+y J4Dgt ov-EB
L0 yuupg)

value given by Eq(23). Hence the discrepancy for small

values ofd between theory and simulations cannot be ex-

plained as a finite-size effect, but can arise from the discrete- +erf(ngyDgt)
ness of the simulations compared with the continuous char-

acter of the theory. Moreover, we can do an approximation

similar to those in Sec. V by replaciny by n in Eq. (21),
but the corrections are negligible for the parameter range X
used in the simulations.

The results indicated above, as well as previous ¢ées
13], clearly indicate the flexibility and adequacy of our sto-
chastic model to describe situations related with the kinetics
of diffusion limited reactions.
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t
Noe~ nOxerfc( Y\/ T

B
X N / t
V4Dt 4 4Dg
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