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Results in trapping reactions for mobile particles and a single trap
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We have exploited a stochastic model for the description of diffusion controlled reactions for trapping
processes with a single trap in a one-dimensional lattice in order to describe in an exact way the particle
distribution as ‘‘seen’’ from the trap, being fixed or mobile, as well as for perfect or imperfect reactions. From
this we have obtained the exact result for the total number of absorbed particles. Moreover, we have a formal
expression for the nearest-neighbor particle distribution that gives the known results in both limits~fixed trap
and fixed particles! and also present an approximate expression that works quite well when the particle
diffusivity is greater than the trap diffusivity.
@S1063-651X~98!00106-8#
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I. INTRODUCTION

The dynamics of diffusion controlled reactions has be
extensively studied in recent years due to its relevance in
most diverse areas of physics, chemistry, and biology. Th
processes include coalescence and annihilation reaction
one- and two-species systems@1#. One of the objectives o
such studies was to find theoretical models that describe
different possible situations correctly. Since the pioneer
contribution of Smoluchowski@2#, many different models
have been proposed@3#. However, most of them do not giv
correct results because the effects of fluctuations and/or
relations were not taken into account. A complete descrip
of this kind of phenomenon must include the probabilis
character of the reaction process. More recent studies h
been reviewed in Refs.@4# and@5#. Among other aspects, th
anomalous kinetics associated with the formation of seg
gates of particles in low-dimensional systems has attra
considerable attention. There is a remarkable sensitivity
such segregation phenomena to changes in initial conditi
the presence of sources, disorder, external forces, etc
large part of the recent literature is devoted to the analysi
these phenomena under the assumption that some kin
rate equations are valid@4,5#.

With the objective of obtaining a more complete descr
tion of such kind of phenomena including the probabilis
character of the reaction process, we have recently in
duced a model that is the continuous limit of the mas
equation usually employed in simulations of these proces
This model has provided a very adequate framework
which to describe these processes, offering the possibilit
describing not only the asymptotic, but also intermedia
and short-times regime, yielding excellent agreement w
simulations both in one- and two-species trapping (A1B
→B andA1B→B, B1C→C) and annihilation (A1B→0!
reactions as well as in several different situations@6–13#.

*Electronic address: sanchez@cab.cnea.edu.ar
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One quantitative measure of the tendency of lo
dimensional reacting systems to segregate is the distand
~in a trapping systemA1B→B, with severalA and oneB)
of theB particle~or trap! to the nearest unreactedA particle,
that is, the generalization of the Hertz distribution@14# that is
valid when neither the trap nor the particles are mobile. S
eral authors have studied this problem of a fixed trap
analyzing different models and schemes including perf
@15,16# and imperfect@17,18# reactions, the hard-core poten
tial @19# and external fields@20,21#. In these works it was
established that the average nearest-neighbor distance g
asymptotically aŝ d&;t1/4 for perfect and imperfect reac
tions, even for the hard-core potential case. Also, the ot
limit case, that is, withA particles stationary andB mobile,
has been analyzed@22# yielding ^d&;t1/2. The much more
complicated intermediate situation, with both the partic
and the trap mobile, has received less attention. There
simulations@23# indicating that^d&;ta, wherea is some
value that interpolates between 1/2 and 1/4 and is a func
of the ratio betweenDA and DB ~the diffusivities of
the particles and the trap, respectively!. The empirical
relation obtained from the simulations
a5 (1/p)tan21A112(DB /DA).

In the present work we analyze this problem within t
framework of our model. We will show that it is possible
obtain the exact expression ofñ(z,t), the distribution of par-
ticles in the reference frame of the trap, and from thisNABS,
the total number of absorbed particles. Moreover, we de
a formal expression for the probability distribution functio
~PDF! of d in the general case.

The organization of the paper is as follows. In Sec. II w
obtain the expressions forñ(z,t) and NABS. In Sec. III we
compute the finite-size effect for both quantities. In Sec.
we derive a formal expression for the nearest-neighbor p
ticle distribution and we extract from it the limiting cases
a stationary trap and mobile particles and stationary parti
and mobile trap. An approximated explicit form for thed’s
PDF is presented in Sec. V. Section VI describes the way
have performed the simulations and shows the compariso
simulations with theoretical results. Section VII is devoted
6390 © 1998 The American Physical Society
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57 6391RESULTS IN TRAPPING REACTIONS FOR MOBILE . . .
some conclusions. We show in the Appendix an independ
derivation of the one-sided nearest-neighbor particle dis
bution in the fixed particles case, using the renewal the
approach.

II. PARTICLE DISTRIBUTION FROM THE TRAP

The model, as was presented in Ref.@6#, considers two
species of particlesA andB, both mobile, independent, an
having a given reaction probability when they meet. Here
will study only a one-dimensional trapping reaction~sym-
bolically written A1B→B) in a system of diffusingA par-
ticles and a single trapB that also performs a diffusive mo
tion.

The model equation for the evolution forN(x,t), the den-
sity of the diffusingA particles, for a given trap realizatio
e(t) is

]

]t
N~x,t !5DA

]2

]x2
N~x,t !2gd„x2e~ t !…N~x,t !, ~1!

whereg is a constant that measures the reaction probabi
As was shown in Ref.@6#, the perfect reaction case corr
sponds to takingg→` in the resulting expressions.

We start by considering the integral form of Eq.~1!

N~x,t !5n02gE
0

t

dt8E
2`

1`

dx8G~x,tux8,t8!

3d„x82e~ t8!…N~x8,t8!, ~2!

whereG(x,tux8,t8) is the propagator~or conditional prob-
ability! of the diffusiveA particles. The first term in Eq.~2!
appears from the propagation of the initial condition, whi
we assume to be uniform and equal ton0.

Instead of repeating the procedure of Ref.@6# and in order
to change our reference system from the laboratory to o
one fixed to the trap, we make the change of variable

x5e~ t !1z. ~3!

The form of the equation, using the new variable, is

N~z,t !5n02gE
0

t

dt8G„e~ t !1z,tue~ t8!,t8…N~0,t8!, ~4!

whereN(z,t)5N„e(t)1z,t…. Here, and in order to find a
closed equation forN, we have also performed a simila
change in the integration variable@x85e(t8)1z8#.

Iterating Eq.~4!, we obtain the series

N~z,t !5n0~12gE
0

t

dt8G„e~ t !1z,tue~ t8!,t8…

1g2E
0

t

dt8E
0

t8
dt9G„e~ t !1z,tue~ t8!,t8…

3G„e~ t8!,t8ue~ t9!,t9…2¯ !. ~5!

The use of a diffusive form for the trap propagat
@W(x,tux8,t8)# allows us to write averages over realizatio
of the processe(t) ~indicated by angular brackets! as
nt
i-
ry

e

y.

er

^G„e~ t !1z,tue~ t8!1z8,t8…&5G~z,tuz8,t8!,
~6!

^G„e~ t !1z,tue~ t8!1z8,t8…G„e~ t8!1z8,t8ue~ t9!1z9,t9…

5G~z,tuz8,t8!^G„e~ t8!1z8,t8ue~ t9!1z9,t9…&,...

whereG(z,tuz8,t8) is a diffusion propagator with a diffusiv
ity that is the sum of both particle and trap diffusivities

G~z,tuz8,t8!5
1

A4p~DA1DB!~ t2t8!

3expF2
~z2z8!2

4~DA1DB!~ t2t8!
G . ~7!

Keeping this in mind, we perform the average and Eq.~5!
finally becomes

ñ~z,t !5n02gE
0

t

dt8E
2`

1`

dz8G~z,tuz8,t8!d~z8!ñ~z8,t8!,

~8!

whereñ(x,t)5^N(x,t)&.
A comparison of Eq.~8! with Eq. ~2! clearly indicates that

the form of the distributionñ(x,t) is analogous to the distri
butionN(x,t) from a fixed trap at the origin@6# but replacing
DA by D5DA1DB , i.e.,

ñ~x,t !5n0FerfS uxu

A4Dt
D 1expS guxu

2D
1

g2t

4D
D

3erfcS uxu

A4Dt
1gA t

4D D G . ~9!

This is an exact result that is valid for all cases. For a perf
absorption reaction the second term of Eq.~9! vanishes.

An interesting aspect could be to quantify the width
depletion zone. With this aim, we linearize the densityñ near
the origin and look for the valuew where it reaches the
initial densityn0. The resulting expression is

w~ t !5
2D

g F expS 2 g2t

4D
D

erfcS g
At

4D
D 21G ,

~10!

w~ t !>ApDt,

where the last equation is an approximate expression th
valid in the long-time limit for imperfect absorption but i
the exact solution for perfect absorption at all times.

We can also calculate the number of absorbed parti
NABS, integratingn02ñ(x,t). The result is
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6392 57A. D. SÁNCHEZ, M. A. RODRIGUEZ, AND H. S. WIO
NABS~ t !54n0FADt

p
1

D

g
expS g2t

4D
D erfcS gA t

4D
D 2

D

g G ,

~11!

where the last two terms vanish for perfect trapping, rend
ing the t1/2 dependence in the complete time regime. T
result agrees with previous simulations of the flux at the t
with perfect absorption @23#, which is given by
(d/dt) NABS52n0AD/pt21/2.

III. FINITE-SIZE EFFECTS

In order to obtain the correction corresponding to fini
size effects, we present now an approach similar to the p
lem of obtaining the density profile from the trap frame, b
r-
s
p

-
b-
t

in a finite lattice with periodic boundary conditions. Th
system is similar to a periodic arrangement of traps that
move rigidly without varying the distances among them. P
ceeding in a similar way to Sec. II, the result for the dens
as seen from the trap is the same as the density with a fi
periodic arrange of traps, replacingDA by D5DA1DB .
This problem has been solved in Refs.@9# and @11# in the
Laplace domain. Unfortunately, it is not possible to perfo
the exact inverse transform and we can only obtain the sh
and long-time behaviors.

A way of obtaining an analytic correction toñ andNABS
due to finite-size effects is to perform the difference betwe
the respective quantity in an infinite system and a finite o
in the Laplace domain and to look for an approximate res
for short times. We callñ(d)(x,t) andNABS

(d) (t) these respec-
tive differences, which are given by
ñ~d!~x,s!5
n0

s F expS 2
As

D
UxU D 1expS 2

As

D
~L2uxu!D

2
ADs

g
F12expS 2

As

D
L D G111expS 2

As

D
D L

2

expS 2
As

D
UxU D

2
ADs

g
11

G , ~12!

NABS
~d! ~s!52

n0AD

s3/2 F 1

2S ADs

g D 11

2
1

2S ADs

g D 1cothS LAs

2AD
D G . ~13!
ed,
These expressions can be expanded for large values ofs in
powers of the small quantity exp(2As/DL). Closing up the
expansion to first order we obtain

ñ~d!~x,s!>
n0

s F expS 2
As

D
~L2uxu!D

2S ADs

g
D 11

1S 2
ADs

g
21D expS 2

As

D
~L1uxu!D

S 2
ADs

g
11D 2 G ,

~14!

NABS
~d! >4n0AD

expS As

D
L D

s3/2S 2
ADs

g
11D 2 . ~15!
Finally, the corrections for finite-size effect can be obtain
resulting in

ñ~d!~x,t !>n0H 2gA t

pD
expS 2 ~L1uxu!2

4Dt
D

1erfcS L2uxu

A4Dt
D 2erfcS L1uxu

A4Dt
D

1F12
g

D
~L1uxu!2

g2t

D
G

3expS g

2D
~L1uxu!1

g2t

4D
D

3erfcS L1uxu

A4Dt
1gA t

4D D
2expS g

2D
~L2uxu!1

g2t

4D
D

3erfcS L2uxu

A4Dt
1gA t

4D D J , ~16!
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NABS
~d! ~ t !>4n0F4ADt

p
expS 2

L2

4Dt
D 2S 4D

g
1L D

3erfcS L

A4Dt
D 1S 4D

g
2L2gt D

3expS g

2D
L1

g2t

4D
D erfcS L

A4Dt
1gA t

4D D G .

~17!

These expressions simplify considerably for perfect abso
tion, yielding

ñ~d!~x,t !>n0FerfcS L2uxu

A4Dt
D 2erfcS L1uxu

A4Dt
D G , ~18!

NABS
~d! ~ t !>4n0F2ADt

p
expS 2

L2

4Dt
D 2LerfcS L

A4Dt
D G .

~19!

IV. NEAREST-NEIGHBOR DISTRIBUTION

A general expression for the PDF of the nearest-neigh
particle has not been obtained until now. In fact, only tw
limiting cases corresponding to keeping fixed either the t
or particles have been analytically treated in the literatu
Both approaches, which at least in principle are not c
nected, give a different asymptotic behavior. In this sect
we derive a general expression for this PDF, obtaining
known results in the above-mentioned limiting cases.

We consider a particular realization of the processe(t)
and an average over the particle random walks. The den
as viewed from the trap, isN(x,t). Thus, following Ref.
@16#, the probability of not finding any particle in (2d,d) is
given by

Q~d,t !5F 12

E
2d

d

N~x,t !dx

E
2L/2

L/2

N~x,t !dx
G F E

2L/2

L/2

N~x,t !dxG
, ~20!

whereL is the lattice length. Here it is worth remarking th
the essential assumption of statistical independence in
processes of diffusion and survival of each particle ho
whenever we consider the same realization. On the contr
by considering several realizations ofe(t), the independence
assumption would fail, as noted in Ref.@22#. Then it is clear
that averages overe(t) must be taken at the end. After takin
L→`, we have the PDF differentiatingQ(d,t) with respect
to d and averaging. The final result is

p~d,t !52
]

]d K expF2E
2d

d

N~x,t !dxG L
5K @N~d,t !1N~2d,t !#expF2E

2d

d

N~x,t !dxG L ,

~21!
p-

or

p
.
-
n
e

ty,

he
s
ry,

whereN(x,t) is given by Eq.~4!. A similar procedure ren-
ders the one-sided PDF, that is,

f x1
~d,t !5KN~d,t !expF2E

0

d

N~x,t !dxG L . ~22!

Equations~21! and~22! are exact in all range of diffusivities
as well as for perfect and imperfect reactions. However,
far they are only formal results.

We can compute from Eqs.~21! and ~9! the exact result

p~0,t !52ñ~0,t !52n0expS g2t

4D
D erfcS gA t

4D D . ~23!

This expression is null for perfect absorption, where
the asymptotic behavior for imperfect reactions
p(0,t).4(n0 /g)AD/(pt).

One of the limit cases of Eq.~21! is whenB is a fixed trap
(DB50!. Since all realizations correspond toe(t)50, we
haveN(x,t)5ñ(x,t)5N(x,t) and

p~d,t !52N~d,t !expF22E
0

d

N~x,t !dxG . ~24!

The factor 2 appearing in both the prefactor and the expon
is due to considering the smaller of the right and the l
nearest-particle distances. Consideration of the one-s
distribution from Eq. ~22! results in the Redner–Ben
Avraham formula@16#. Within our model these PDFs can b
obtained exactly. We give here the value of the integral t
appears in the exponent. It is

E
0

x

N~z,t !dz5n0HA4DAt

p
FexpS 2

x2

4DAt
D 21G

1S x1
2DA

g
D erfS x

A4DAt
D 1

2DA

g
expS g2t

4DA
D

3FexpS gx

2DA
D erfcS x

A4DAt
1gA t

4DA
D

2erfcS gA t

4DA
D G J . ~25!

The asymptotic expression for the PDF is the skewed Ga
ian

p~d,t→`!52n0S d

ADA

1
2ADA

g
D 1

Apt

3expF2n0S d2

ADA

1
4ADA

g
dD 1

Apt
G , ~26!

which allows us to calculate the mean value ofd in the
asymptotic time regime
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6394 57A. D. SÁNCHEZ, M. A. RODRIGUEZ, AND H. S. WIO
^d&5
~p3DAt !1/4

2An0

expS 4n0DA
3/2

g2Apt
D erfcF2An0DA

3/4

g~pt !1/4 G
>

~p3DAt !1/4

2An0

. ~27!

Equations~26! and ~27! were obtained in Ref.@17#, where
the partial reflection coefficientk is related withg through
k5 g/(2DA) @6#.

The opposite limit of immobile particles is less trivial b
also possible to obtain in the perfect absorption case. Ins
of solving Eq.~4! using thatG„e(t)1z,tue(t8),t8…5d„e(t)
1z2e(t8)…, we can directly guess the solution as

N~z,t !5n0$12u„z2emin~ t !…1u„z2emax~ t !…%, ~28!

emin(t) andemax(t) being the minimum and maximum va
ues reached by the trap until timet in the trap frame. Al-
though we can obtainp(d,t), for simplicity we only present
the derivation off x1

(d,t). Substituting this expression in Eq
~22!, we obtain

f x1
~d,t !5n0E

0

d

h~x,t !e2n0~d2x!dx, ~29!

whereh(x,t) is the PDF ofemax(t). This convoluted form
corresponds to a PDF of a sum of two independents v
ables:emax(t) and the distance from the maximum excursi
to the nearest particle~exponentially distributed!. This ap-
proach is the one used in@22#, where the expression wa
explicitly computed. We do not repeat the calculations he
but we note that this result is contained in Eq.~A4! by taking
g→`.

V. A SIMPLE APPROXIMATION

As we have seen in the preceding section, the calcula
of the PDF in a general situation involves the averaging
exp@22*0

dN(x,t)dx#, N(x,t) being a functional of the pro
cesse(t). The explicit form ofN(x,t) in terms ofe(t) could
be obtained solving the integral equation~4!. Both calcula-
tions, the averaging and the inversion of Eq.~4!, would be
analytically performed only in very few cases. In gener
one should resort to approximations. In this section we sh
a simple approximation leaving more sophisticated meth
based on path integrals for a future work.

In our approximation we will take the averages of E
~21! using the method of cumulants. Hence we have

lnK expF2E
2d

d

N~x,t !dxG L
522E

0

d

ñ~x,t !dx1
1

2 H E
2d

d E
2d

d

^N~x,t !N~x8,t !&

3dx dx824F E
0

d

ñ~x,t !dxG2J 1¯. ~30!

The lower-order approximation consist on closing the exp
sion up to first order. In this case the PDF can be written
ad

i-

,

n
f

,
w
s

.

-
s

p~d,t !52ñ~d,t !expF22E
0

d

ñ~x,t !dxG ~31!

and an explicit expression can be given sinceñ and the in-
tegral involved have been exactly calculated previously@Eqs.
~9! and~25!, substitutingDA by D]. Within this approxima-
tion the absorption of diffusing particles with a coefficie
DA due to a diffusing trap of coefficientDB is equivalent to
the case of diffusing particles with the coefficientDA1DB
absorbed by a fixed trap and hence Eqs.~26! and ~27! are
valid ~again substitutingDA by D) and then we have

^d&;t1/4 in the long-time regime.

VI. SIMULATIONS

To test our results we have performed simulations
different values of parameters. The simulations were p
formed on a lattice ofL sites with periodic boundary condi
tions. We have initially distributedN0 particles at random
over the lattice and allowed them to perform a continuo
time random walk~characterized by the jump frequency
each neighbor siteq). In each site we can have any numb
of A particles and when two particles (A andB) coincide in
the same site, theA particle disappears with a ratep.

This algorithm is implemented in the following way. A
the start we assign a diffusion time for each particle an
reaction time for eachA particle in the same site as the tra
Then we perform the event corresponding to the earlier tim
If it is a reaction process theA particle disappears; if it is a
diffusion process the particle moves to one of the neighb
ing sites. Then we generate a new diffusion and eventu
new reaction times. The algorithm follows, choosing t
event corresponding again to the earlier time and repea
the same steps until the desired final time is reached. Fin
it is not difficult to see that diffusion and reaction times mu
be generated by adding to the present time a new time w
the following PDFs:f (t)52qexp(22qt) for diffusion times
and f (t)5pexp(2pt) for reaction times. The connections b
tween simulation parameters and the model ones are g
by D5qDx2 andg5pDx, whereDx is the jump length. All
simulations are the result of 10 000 realizations and th
were performed in a lattice of 101 sites with an initial dens
of particlesn051.

To test the theoretical expression forñ(x,t) @Eq. ~9!# we
have performed simulations for different values ofDA and
DB . In Fig. 1 we show those comparisons for different v
ues ofg. In addition, we also compare with the results of t
model considering a finite-size lattice. Curves for differe
values ofg are similar, with the notable difference that fo
perfect absorption the density at the trap position is null a
reaches a finite value for imperfect absorption, which
larger for smallerg. The agreement between the model a
the simulations is excellent.

In Fig. 2 we show the comparison between simulatio
and our model results forNABS for different values ofg. The
agreement between the model and the simulations is a
excellent up to times where finite-size effects are noticea
In the inset we show the lower-order correction to the mo
due to these effects.

Figure 3 shows the comparison of our approximation
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the PDF@Eq. ~31!# with simulations. We note that the men
tioned expression is exact forDB50 for the whole time
regime. We can see that the approximation works better
smaller values of trap diffusivity and for shorter times. F
d50, the theoretical value given by Eq.~31! is the exact one
and coincides with Eq.~23!. However, the values of the PD
at the origin coming from simulations, even though all

FIG. 1. Density ofA particles in the reference frame of the tra
for different values ofg: ~a! g→` ~perfect reaction!, ~b! g51, and
~c! g50.1. The solid line corresponds to our model finite-size
sults, the dashed line to the infinite lattice, and the points are
results of simulations for differentDA values: DA51 ~squares!,
0.75 ~circles!, 0.5 ~up triangles!, 0.25 ~down triangles!, and 0~dia-
monds!, in such way thatD51 in all cases. The different curve
corresponds to times~from top to bottom! t5150, 300, and 600.
The values ofw in ascending order of time are~a! 21.7, 30.7, and
43.4; ~b! 20, 28.9, and 41.6; and~c! 15.6, 22.8, and 33.6.
or
r

f

them reach the same value independent ofDB , do not agree
with the theoretical one.

VII. CONCLUSIONS

In conclusion, we have shown that the stochastic mo
we have recently introduced for the description of diffusi
limited reactions allows us to calculate the exact express
of ñ(z,t), the distribution of particles in the reference fram
of the trap. The resulting density depends only on diffusi
ties through the sum of trap and particle ones. Sett
D5DA1DB , ñ(z,t) can be obtained changingDA to D in
the densityN(x,t) of the simpler problem of a fixed trap a
the origin and mobile particles. Integrating the density,
have computed the absorbed particle number given an
lytical expression rendering at1/2 dependence, in accord wit
previous simulations@23#. Moreover, we have calculated th
finite-size corrections to both quantities, showing excell
agreement with simulations, and also obtained an estima
for the depletion width that in the long-time limit goes a
w(t);ApDt.

A general~formal! expression for the PDF of the neares
neighbor particle in the general case has been derived. F
this expression we have reobtained the known cases of fi
trap and fixed particles, which in principle have shown
connections between them until now. Although the gene
expression is a formal one, through a cumulant expansion
have obtained a simple approximation that works quite w
for small DB . This PDF is normalized and yields the exa
value ford50 given by Eq.~23!. This approximation yields,
in the asymptotic limit,̂ d&;t1/4. Instead, in Ref.@23#, an
exponent depending on the ratioDA /DB has been proposed
but without a clear argument supporting such a result, wh
nevertheless does work well.

The form of Eq.~21!, together with the assumption of th
trap’s diffusion motion, preluded a path integral treatme
~which is yet to be fully exploited in the context of diffusio
limited reactions@24#!, which suggests better approximation
for the entire regime of values ofDA andDB . Such an analy-
sis will be the subject of a future work.

We remark here that it is not difficult to obtain the PD

-
e

FIG. 2. A log-log plot of absorbed particles for different valu
of absorption. From top to bottomg→`, g51, andg50.1. The
points are the result of simulations, while the dashed line co
sponds to our model for an infinite lattice. The inset shows the sa
curves forg51 in a linear plot, where the finite-size correction
~solid line! have been added. The diffusivities used a
DA5DB50.5.
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for the nearest-neighbor distance for a finite lattice followi
a procedure similar to that in Sec. IV, but without takin
L→`. It renders a formal equation similar to Eq.~21!. How-
ever, such an equation will still have, ford50, the same
value given by Eq.~23!. Hence the discrepancy for sma
values ofd between theory and simulations cannot be
plained as a finite-size effect, but can arise from the discr
ness of the simulations compared with the continuous c
acter of the theory. Moreover, we can do an approximat
similar to those in Sec. V by replacingN by ñ in Eq. ~21!,
but the corrections are negligible for the parameter ra
used in the simulations.

The results indicated above, as well as previous ones@6–
13#, clearly indicate the flexibility and adequacy of our st
chastic model to describe situations related with the kine
of diffusion limited reactions.
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FIG. 3. PDF for ~a! t5250 and~b! t51000. The solid line
corresponds to our approximation, while points correspond to si
lations with different values of diffusivities. The parameter valu
and the code for diffusivities used are the same as those in Fig.~b!.
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APPENDIX: A RENEWAL APPROACH FOR FIXED
PARTICLES

We consider here the case when the particles are fixed
the trap is a mobile one. We callx1 the distance between th
trap and the nearest particle,x2 the distance between it an
the following particle, etc. Then we consider this situation
a modified renewal process@25#, wherex2, x3 , . . . , allhave
the same exponential PDF given by

f xi
~x!5 f ~x!5n0exp~2n0x!, ~A1!

with i 52,3, . . . .Note that this assumption is exact for pe
fect absorption, but only a good approximation for the ca
of imperfect reactions. Then we can write the relation

ñ* ~p,t !5 f x1
* ~p,t !(

j 50

`

@ f * ~p!# j , ~A2!

where the asterisk to a function indicates the Laplace tra
form in the spatial variable. From Eq.~A2! one immediately
obtains the nearest-neighbor particle distribution in
Laplace domainf x1

* (p,t), which results

f x1
* ~p,t !5

n0

p1n0
H eDBtp2

erfc~ADBtp!1
p

p2g/~2DB!

3Feg2t/~4DB!erfcS gA t

4DB
D

2eDBtp2
erfc~ADBtp!G J . ~A3!

This expression can be inverted to give the one-sided PD

f x1
~x,t !5

n0g

2n0DB1g
e2n0x1n0

2DBtFerfS x

A4DBt
2n0ADBt D

1erf~n0ADBt !G1
n0

n01
g

2DB

eg2t/~4DB!

3Fn0e2n0xerfcS gA t

4DB
D

1
g

2DB

egx/~2DB!erfcS x

A4DBt
1gA t

4DB
D G .

~A4!

However, to obtain the mean value, it is easier to comput
from Eq. ~A3!, taking ^d&52(]/]p) f x1

* (p,t)up50, which

gives

^d&5
1

n0

1A4DBt

p
1

2DB

g
Feg2t/~4DB!erfcS gA t

4DB
D 21G .

~A5!

This result generalizes the one obtained in Ref.@22#, where
only perfect absorption was considered.
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